论文标题

线性周期性事件触发控制器的交通分配

Towards Traffic Bisimulation of Linear Periodic Event-Triggered Controllers

论文作者

Gleizer, Gabriel de A., Mazo Jr, Manuel

论文摘要

我们提供了一种在修改后的周期性事件触发控制(PETC)下与线性系统完全偶尔的有限抽象的方法,当将其视为输出它们产生的事件间时间。假设初始状态位于已知的紧凑型集合,那么这些有限状态模型可以准确预测采样时间的所有序列,直到达到指定的Lyapunov Sublevel集合为止。基于这些结果,我们提供了一种构建模拟常规PETC流量的紧密模型的方法。这些模型允许计算PETC平均频率和全局指数稳定性(GES)衰减速率的紧密界限。我们的结果通过数值案例研究来证明。

We provide a method to construct finite abstractions exactly bisimilar to linear systems under a modified periodic event-triggered control (PETC), when considering as output the inter-event times they generate. Assuming that the initial state lies on a known compact set, these finite-state models can exactly predict all sequences of sampling times until a specified Lyapunov sublevel set is reached. Based on these results, we provide a way to build tight models simulating the traffic of conventional PETC. These models allow computing tight bounds of the PETC average frequency and global exponential stability (GES) decay rate. Our results are demonstrated through a numerical case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源