论文标题

一种全动态算法,用于k regret最小化集合

A Fully Dynamic Algorithm for k-Regret Minimizing Sets

论文作者

Wang, Yanhao, Li, Yuchen, Wong, Raymond Chi-Wing, Tan, Kian-Lee

论文摘要

从大型数据库中选择一小部分代表在许多应用程序中很重要,例如多标准决策,Web搜索和建议。 $ k $ regret最小化集合($ k $ -rms)的问题最近提出了代表性元组发现的问题。具体来说,对于具有多个数值属性的大型数据库$ p $,$ k $ -rms的问题返回一个size-$ r $ r $ r $ subset $ q $ $ p $的$ p $,这样,对于任何可能的排名函数,$ q $ in $ q $的得分都不比$ k $ k $ k $ k $ \ intectsup $ \ int $ q的得分差不多。尽管在文献中已经对$ k $ -RMS问题进行了广泛的研究,但现有方法是为静态设置而设计的,并且在更新数据库时无法有效地维护结果。为了解决此问题,我们建议使用$ K $ -RMS问题的第一个完全动态算法,该算法可以有效地提供最新的结果W.R.T.几个现实世界和合成数据集的实验结果表明,我们的算法比现有$ K $ -RMS算法快四个数量级,同时返回质量几乎相等的结果。

Selecting a small set of representatives from a large database is important in many applications such as multi-criteria decision making, web search, and recommendation. The $k$-regret minimizing set ($k$-RMS) problem was recently proposed for representative tuple discovery. Specifically, for a large database $P$ of tuples with multiple numerical attributes, the $k$-RMS problem returns a size-$r$ subset $Q$ of $P$ such that, for any possible ranking function, the score of the top-ranked tuple in $Q$ is not much worse than the score of the $k$\textsuperscript{th}-ranked tuple in $P$. Although the $k$-RMS problem has been extensively studied in the literature, existing methods are designed for the static setting and cannot maintain the result efficiently when the database is updated. To address this issue, we propose the first fully-dynamic algorithm for the $k$-RMS problem that can efficiently provide the up-to-date result w.r.t.~any insertion and deletion in the database with a provable guarantee. Experimental results on several real-world and synthetic datasets demonstrate that our algorithm runs up to four orders of magnitude faster than existing $k$-RMS algorithms while returning results of nearly equal quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源