论文标题

半监督分类的深图学习

Deep graph learning for semi-supervised classification

论文作者

Lin, Guangfeng, Kang, Xiaobing, Liao, Kaiyang, Zhao, Fan, Chen, Yajun

论文摘要

图表学习(GL)可以基于图形卷积网络(GCN)的数据动态捕获数据的分布结构(图结构),并且图形结构的学习质量直接影响了半监督分类的GCN。现有方法主要将计算层和相关损失结合到GCN中,以探索全局图(从所有数据示例中测量图形结构)或本地图(测量局部数据样本的图形结构)。全局图强调了类间数据的整个结构描述,而本地图趋势是阶层内数据的邻域结构表示。但是,由于这些图的相互依存关系,很难同时平衡半监督分类的学习过程图。为了模拟相互依赖性,提出了深图学习(DGL),以找到半监督分类的更好的图表。 DGL不仅可以通过上一层度量计算更新来学习全局结构,还可以通过下一层局部重量重新分配局部结构。此外,DGL可以通过动态编码这些结构的相互依赖性来融合不同的结构,并通过分层渐进学习深入挖掘不同结构的关系,从而改善了半手不足的分类的性能。实验证明,用于图像的三个基准数据集(Citeseer,cora和PubMed)上的DGL优于最先进的方法(Citeseer,Cora和PubMed),以及两个用于图像的基准数据集(MNIST和CIFAR10)。

Graph learning (GL) can dynamically capture the distribution structure (graph structure) of data based on graph convolutional networks (GCN), and the learning quality of the graph structure directly influences GCN for semi-supervised classification. Existing methods mostly combine the computational layer and the related losses into GCN for exploring the global graph(measuring graph structure from all data samples) or local graph (measuring graph structure from local data samples). Global graph emphasises on the whole structure description of the inter-class data, while local graph trend to the neighborhood structure representation of intra-class data. However, it is difficult to simultaneously balance these graphs of the learning process for semi-supervised classification because of the interdependence of these graphs. To simulate the interdependence, deep graph learning(DGL) is proposed to find the better graph representation for semi-supervised classification. DGL can not only learn the global structure by the previous layer metric computation updating, but also mine the local structure by next layer local weight reassignment. Furthermore, DGL can fuse the different structures by dynamically encoding the interdependence of these structures, and deeply mine the relationship of the different structures by the hierarchical progressive learning for improving the performance of semi-supervised classification. Experiments demonstrate the DGL outperforms state-of-the-art methods on three benchmark datasets (Citeseer,Cora, and Pubmed) for citation networks and two benchmark datasets (MNIST and Cifar10) for images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源