论文标题

将细粒和粗粒细胞分类器组合用于糖尿病性视网膜病变检测

Combining Fine- and Coarse-Grained Classifiers for Diabetic Retinopathy Detection

论文作者

Bajwa, Muhammad Naseer, Taniguchi, Yoshinobu, Malik, Muhammad Imran, Neumeier, Wolfgang, Dengel, Andreas, Ahmed, Sheraz

论文摘要

视网膜眼底图像中早期糖尿病性视网膜病的视觉伪影通常尺寸很小,不起眼,并且散布在视网膜上。检测糖尿病性视网膜病要求医生查看整个图像并固定在某些特定区域,以定位该疾病的潜在生物标志物。因此,我们从眼科医生那里获得灵感,我们建议将发现从整个图像中的区分特征的粗粒分类器结合在一起,以及最近发现的细粒分类器,这些分类器发现并特别关注病理学上有意义的区域。为了评估该提议的合奏的性能,我们使用了公开可用的Eyepacs和Messidor数据集。对二进制,三元和第四纪分类的广泛实验表明,该合奏在很大程度上胜过单个图像分类器以及大多数用于糖尿病性视网膜病变检测的训练设置中的大多数已发表作品。此外,发现细颗粒分类器的性能要比粗粒的图像分类器要优于鼓励以专家眼科医生建模的以任务为导向的细粒分类器的开发。

Visual artefacts of early diabetic retinopathy in retinal fundus images are usually small in size, inconspicuous, and scattered all over retina. Detecting diabetic retinopathy requires physicians to look at the whole image and fixate on some specific regions to locate potential biomarkers of the disease. Therefore, getting inspiration from ophthalmologist, we propose to combine coarse-grained classifiers that detect discriminating features from the whole images, with a recent breed of fine-grained classifiers that discover and pay particular attention to pathologically significant regions. To evaluate the performance of this proposed ensemble, we used publicly available EyePACS and Messidor datasets. Extensive experimentation for binary, ternary and quaternary classification shows that this ensemble largely outperforms individual image classifiers as well as most of the published works in most training setups for diabetic retinopathy detection. Furthermore, the performance of fine-grained classifiers is found notably superior than coarse-grained image classifiers encouraging the development of task-oriented fine-grained classifiers modelled after specialist ophthalmologists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源