论文标题

可扩展的神经网络,用于有效学习无序量子系统

Scalable neural networks for the efficient learning of disordered quantum systems

论文作者

Saraceni, N., Cantori, S., Pilati, S.

论文摘要

监督的机器学习正在成为一种强大的计算工具,以有限的计算成本预测复杂量子系统的性质。在本文中,我们量化了如何准确的深度神经网络可以学习无序量子系统的特性,这是系统大小的函数。我们实施一个可扩展的卷积网络,可以解决任意系统大小。该网络与最近引入的广泛卷积体系结构进行了比较[K. Mills等人,化学。科学。 10,4129(2019)]以及具有全面连接性的传统密集网络。对网络进行了训练,以预测各种无序系统的确切地面能量,即用于斑点障碍的冷原子的连续空间单粒子哈密顿量,以及具有随机耦合的量子iSing链的不同设置,其中包括仅具有短距离相互作用的量子,并且具有长度范围。在我们考虑的所有测试床中,随着系统尺寸的增加,可扩展网络保持高精度。此外,我们证明了网络可伸缩性可以实现转移学习协议,因此,在小型系统上进行的预训练会大大加速大型系统属性,从而通过小型训练集可以达到高精度。实际上,使用可扩展的网络,甚至可以推断出比训练集中包含的网络更大的尺寸,从而准确地重现了最新的量子蒙特卡洛模拟结果。

Supervised machine learning is emerging as a powerful computational tool to predict the properties of complex quantum systems at a limited computational cost. In this article, we quantify how accurately deep neural networks can learn the properties of disordered quantum systems as a function of the system size. We implement a scalable convolutional network that can address arbitrary system sizes. This network is compared with a recently introduced extensive convolutional architecture [K. Mills et al., Chem. Sci. 10, 4129 (2019)] and with conventional dense networks with all-to-all connectivity. The networks are trained to predict the exact ground-state energies of various disordered systems, namely a continuous-space single-particle Hamiltonian for cold-atoms in speckle disorder, and different setups of a quantum Ising chain with random couplings, including one with only short-range interactions and one augmented with a long-range term. In all testbeds we consider, the scalable network retains high accuracy as the system size increases. Furthermore, we demonstrate that the network scalability enables a transfer-learning protocol, whereby a pre-training performed on small systems drastically accelerates the learning of large-system properties, allowing reaching high accuracy with small training sets. In fact, with the scalable network one can even extrapolate to sizes larger than those included in the training set, accurately reproducing the results of state-of-the-art quantum Monte Carlo simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源