论文标题

向后半丁属汉堡的镇压

Backwards semi-martingales into Burgers' turtulence

论文作者

Nzissila, Florent, Moutsinga, Octave, Obiang, Fulgence Eyi

论文摘要

在由一维无粘性汉堡方程$ \ partial_t u+u \ u \ partial_x(u)= 0 $控制的流体动力学中,搅拌由粘性粒子模型解释。 Markov进程$([z^1_t,z^2_t],\,t \ geq0)$描述了随机湍流间隔的运动,这些间隔在另一个马尔可夫进程中演变为$([z^3_t,z^4_t],\,\,t \ geq0)$,描述了与随机夹的动作有关的随机cluss cass ces the the the the the the the the the the the the the the the the the Turmencers的动作。然后,四个速度进程$(u(z^i_t,t),\,t \ geq0)$是向后的半明天。

In fluid dynamics governed by the one dimensional inviscid Burgers equation $\partial_t u+u\partial_x(u)=0$, the stirring is explained by the sticky particles model. A Markov process $([Z^1_t,Z^2_t],\,t\geq0)$ describes the motion of random turbulent intervals which evolve inside an other Markov process $([Z^3_t,Z^4_t],\,t\geq0)$, describing the motion of random clusters concerned with the turbulence. Then, the four velocity processes $(u(Z^i_t,t),\,t\geq0)$ are backward semi-martingales.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源