论文标题
使用马尔可夫链蒙特卡洛近似贝叶斯计算的亚网格规模模型的参数估计
Parameter Estimation for Subgrid-Scale Models Using Markov Chain Monte Carlo Approximate Bayesian Computation
论文作者
论文摘要
我们使用近似贝叶斯计算(ABC)与“改进的”马尔可夫链蒙特卡洛(IMCMC)方法相结合,以估计湍流大型涡流模拟(LES)在亚网格尺度(SGS)封闭中模型参数的后验分布。 ABC-IMCMC方法避免了在参数估计期间直接计算似然函数的需求,与完整的贝叶斯方法相比,可以实现实质性的加速和更大的灵活性。该方法还自然地在参数估计中提供了不确定性,避免了许多优化方法暗示的人为确定性,以确定模型参数。在这项研究中,我们概述了当前ABC-IMCMC方法的细节,包括使用自适应建议和校准步骤来加速参数估计过程。我们通过使用来自均质各向同性湍流的直接数值模拟的参考数据来估算两个非线性SGS的参数来证明该方法。我们表明,所得的参数值在先验测试中与SGS应力和动能生产速率的参考概率密度函数具有良好的一致性,同时还提供了均质的同型等于同性恋湍流的正向LES(即后验测试)中的稳定溶液。因此,ABC-IMCMC方法被证明是在SGS闭合模型中用于湍流流中的SGS关闭模型中估算未知参数(包括其不确定性)的有效方法。
We use approximate Bayesian computation (ABC) combined with an "improved" Markov chain Monte Carlo (IMCMC) method to estimate posterior distributions of model parameters in subgrid-scale (SGS) closures for large eddy simulations (LES) of turbulent flows. The ABC-IMCMC approach avoids the need to directly compute a likelihood function during the parameter estimation, enabling a substantial speed-up and greater flexibility as compared to full Bayesian approaches. The method also naturally provides uncertainties in parameter estimates, avoiding the artificial certainty implied by many optimization methods for determining model parameters. In this study, we outline details of the present ABC-IMCMC approach, including the use of an adaptive proposal and a calibration step to accelerate the parameter estimation process. We demonstrate the approach by estimating parameters in two nonlinear SGS closures using reference data from direct numerical simulations of homogeneous isotropic turbulence. We show that the resulting parameter values give excellent agreement with reference probability density functions of the SGS stress and kinetic energy production rate in a priori tests, while also providing stable solutions in forward LES (i.e., a posteriori tests) for homogeneous isotropic turbulence. The ABC-IMCMC method is thus shown to be an effective and efficient approach for estimating unknown parameters, including their uncertainties, in SGS closure models for LES of turbulent flows.