论文标题

Interspeech 2020深噪声抑制挑战:数据集,主观测试框架和挑战结果

The INTERSPEECH 2020 Deep Noise Suppression Challenge: Datasets, Subjective Testing Framework, and Challenge Results

论文作者

Reddy, Chandan K. A., Gopal, Vishak, Cutler, Ross, Beyrami, Ebrahim, Cheng, Roger, Dubey, Harishchandra, Matusevych, Sergiy, Aichner, Robert, Aazami, Ashkan, Braun, Sebastian, Rana, Puneet, Srinivasan, Sriram, Gehrke, Johannes

论文摘要

Interspeech 2020深噪声抑制(DNS)挑战旨在促进实时单渠道语音增强的协作研究,旨在最大程度地提高增强语音的主观(感知)质量。评估噪声抑制方法的一种典型方法是在通过拆分原始数据集获得的测试集上使用客观指标。虽然在合成测试集上的性能良好,但模型性能通常会在真实录音中显着降低。同样,大多数常规客观指标与主观测试不太相关,而实验室主观测试对于大型测试集而言无法扩展。在这一挑战中,我们开源了一个大型的干净语音和噪音语料库,用于训练抑制噪声模型,并将代表性的测试集与由合成记录和真实记录组成的真实场景。我们还基于ITU-T P.808开放了一个在线主观测试框架,以可靠地测试他们的发展。我们在盲验测试集中使用P.808评估了结果。讨论了挑战的结果和关键学习。可以在此处找到数据集和脚本,以便快速访问https://github.com/microsoft/dns-challenge。

The INTERSPEECH 2020 Deep Noise Suppression (DNS) Challenge is intended to promote collaborative research in real-time single-channel Speech Enhancement aimed to maximize the subjective (perceptual) quality of the enhanced speech. A typical approach to evaluate the noise suppression methods is to use objective metrics on the test set obtained by splitting the original dataset. While the performance is good on the synthetic test set, often the model performance degrades significantly on real recordings. Also, most of the conventional objective metrics do not correlate well with subjective tests and lab subjective tests are not scalable for a large test set. In this challenge, we open-sourced a large clean speech and noise corpus for training the noise suppression models and a representative test set to real-world scenarios consisting of both synthetic and real recordings. We also open-sourced an online subjective test framework based on ITU-T P.808 for researchers to reliably test their developments. We evaluated the results using P.808 on a blind test set. The results and the key learnings from the challenge are discussed. The datasets and scripts can be found here for quick access https://github.com/microsoft/DNS-Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源