论文标题
尺寸结合的时间相关的结构
Structure of dimension-bounded temporal correlations
论文作者
论文摘要
我们分析量子系统产生的时间相关空间的结构。我们表明,尺寸约束下的时间相关空间可以是非convex。对于一般情况,我们提供了为给定情况生成凸相关空间所需的量子系统所需的足够尺寸。我们进一步证明,该维度与在时间相关多层中生成任何点所需的维度一致。作为结果的应用,我们得出了非线性不平等,以在最简单的情况下见证Qubits和Qutrits的非概念性,并提出一种算法,可以帮助找到在维度约束下某种类型的非线性表达式的最小值。
We analyze the structure of the space of temporal correlations generated by quantum systems. We show that the temporal correlation space under dimension constraints can be nonconvex. For the general case, we provide the necessary and sufficient dimension of a quantum system needed to generate a convex correlation space for a given scenario. We further prove that this dimension coincides with the dimension necessary to generate any point in the temporal correlation polytope. As an application of our results, we derive nonlinear inequalities to witness the nonconvexity for qubits and qutrits in the simplest scenario, and present an algorithm which can help to find the minimum for a certain type of nonlinear expressions under dimension constraints.