论文标题
最大的尼罗氏络合物结构
Maximal nilpotent complex structures
论文作者
论文摘要
让$(\ mathfrak {g},j)$为nilpotent Lie代数$ \ mathfrak {g} $(简称NLA),并带有Nilpotent复杂结构$ J $。在本文中,是由Cordero,Fernández,Gray和Ugarte的一个问题的动机,我们证明$ 2 \leqν(J)\ leq 3 $ for $(\ Mathfrak {G},J),J)$ n $ n时,$ν(\ Mathfrak {G} $ \ mathfrak {g} $和$ν(j)$是唯一的最小整数,因此$ \ mathfrak {a}(j)_ {ν(J)} = \ Mathfrak {g} $如Corder,Fernández,Gray,Gray,Gray和Ugarte的定义1和8所示。当$ν(\ Mathfrak {g})= 3 $,对于任意$ n \ geq 3 $,存在一对$(\ Mathfrak {g},j),j),使得$ν(j)= \ dim _ {\ dim _ {\ mathbb {c}}}}}}}}}}} \ mathfrak {g} = n $,我们称为$ in $ in $ in $ in n un n我们,我们在$ in n op n y y $ in y y y y y y我们in Che in Che in Che in Che in Che in Che in Che in Che in Che in Ape con y我们属于我们的; $(\ mathfrak {g},j)$,满足$ν(j)= \ dim _ {\ mathbb {c}}} \ mathfrak {g} = n $,最大nilpotent(简短)的最大nilpotent(短)。讨论了尼尔曼群岛的代数维度,并讨论了左不变型MAXN复合结构的代数维度。此外,证明了对$(\ mathfrak {g},j)$的结构定理,其中$ν(\ mathfrak {g})= 3 $和$ j $是最大的复杂结构。
Let the pair $(\mathfrak{g},J)$ be a nilpotent Lie algebra $\mathfrak{g}$ (NLA for short) endowed with a nilpotent complex structure $J$. In this paper, motivated by a question in the work of Cordero, Fernández, Gray and Ugarte, we prove that $2\leq ν(J) \leq 3$ for $(\mathfrak{g},J)$ when $ν(\mathfrak{g})=2$, where $ν(\mathfrak{g})$ is the step of $\mathfrak{g}$ and $ν(J)$ is the unique smallest integer such that $\mathfrak{a}(J)_{ν(J)}=\mathfrak{g}$ as in Definition 1 and 8 of the paper by Cordero, Fernández, Gray and Ugarte. When $ν(\mathfrak{g})=3$, for arbitrary $n \geq 3$, there exists a pair $(\mathfrak{g},J)$ such that $ν(J)=\dim_{\mathbb{C}}\mathfrak{g}=n$, for which we call the $J$ in the pair $(\mathfrak{g},J)$, satisfying $ν(J)=\dim_{\mathbb{C}}\mathfrak{g}=n$, a maximal nilpotent (MaxN for short) complex structure. The algebraic dimension of a nilmanifold endowed with a left invariant MaxN complex structure is discussed. Furthermore, a structure theorem is proved for the pair $(\mathfrak{g},J)$, where $ν(\mathfrak{g})=3$ and $J$ is a MaxN complex structure.