论文标题
最佳纵主,直径完美代码,链条和重量
Optimal Anticodes, Diameter Perfect Codes, Chains and Weights
论文作者
论文摘要
令$ p $为$ [n] = \ {1,2,\ ldots,n \} $,$ \ mathbb {f} _ {q}^n $是$ n $ -tuples的线性空间,这是有限的字段$ \ mathbb {f} _ {q} $ w $ w $ w $ w $ w $ $ \ mathbb {f} _ {q} $。在本文中,我们考虑$ \ Mathbb {f} _ {q}^n $ to $ p $ $ p $ over $ [n] $ of $ [n] $和$ \ mathbb {f} _q $ toges $ w $ to的指标,我们确定了所有最佳二激代的基础性,并完全对其进行分类。此外,我们确定了上述度量空间上一组相关实例的所有直径完美代码。
Let $P$ be a partial order on $[n] = \{1,2,\ldots,n\}$, $\mathbb{F}_{q}^n$ be the linear space of $n$-tuples over a finite field $\mathbb{F}_{q}$ and $w$ be a weight on $\mathbb{F}_{q}$. In this paper, we consider metrics on $\mathbb{F}_{q}^n$ induced by chain orders $P$ over $[n]$ and weights $w$ over $\mathbb{F}_q$, and we determine the cardinality of all optimal anticodes and completely classify them. Moreover, we determine all diameter perfect codes for a set of relevant instances on the aforementioned metric spaces.