论文标题

AFAT:适应性视觉对象跟踪的自适应故障感知跟踪器

AFAT: Adaptive Failure-Aware Tracker for Robust Visual Object Tracking

论文作者

Xu, Tianyang, Feng, Zhen-Hua, Wu, Xiao-Jun, Kittler, Josef

论文摘要

暹罗方法最近在视觉对象跟踪中取得了有希望的表现。暹罗跟踪器成功的关键是通过大规模视频数据集中的配对离线培训学习外观不变的功能嵌入功能。但是,暹罗范式使用单次学习来建模在线跟踪任务,这阻碍了在线跟踪过程中的适应。此外,未衡量在线跟踪响应的不确定性,导致忽略潜在失败的问题。在本文中,我们在跟踪阶段提倡在线改编。为此,我们提出了一个由质量预测网络(QPN)实现的失败感系统,该系统基于决策阶段的卷积和LSTM模块,从而在线报告潜在的跟踪失败。具体而言,收集了先前连续帧以及当前帧的顺序响应图以预测跟踪置信度,并在决策水平上实现时空融合。此外,我们通过将最先进的暹罗跟踪器与我们的系统梳理,进一步提供了自适应失败的跟踪器(AFAT)。在标准基准数据集上获得的实验结果证明了拟议的失败感知系统的有效性和我们的AFAT跟踪器的优点,其精度和速度都出色且平衡。

Siamese approaches have achieved promising performance in visual object tracking recently. The key to the success of Siamese trackers is to learn appearance-invariant feature embedding functions via pair-wise offline training on large-scale video datasets. However, the Siamese paradigm uses one-shot learning to model the online tracking task, which impedes online adaptation in the tracking process. Additionally, the uncertainty of an online tracking response is not measured, leading to the problem of ignoring potential failures. In this paper, we advocate online adaptation in the tracking stage. To this end, we propose a failure-aware system, realised by a Quality Prediction Network (QPN), based on convolutional and LSTM modules in the decision stage, enabling online reporting of potential tracking failures. Specifically, sequential response maps from previous successive frames as well as current frame are collected to predict the tracking confidence, realising spatio-temporal fusion in the decision level. In addition, we further provide an Adaptive Failure-Aware Tracker (AFAT) by combing the state-of-the-art Siamese trackers with our system. The experimental results obtained on standard benchmarking datasets demonstrate the effectiveness of the proposed failure-aware system and the merits of our AFAT tracker, with outstanding and balanced performance in both accuracy and speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源