论文标题

多代理预测状态表示的张量分解

Tensor Decomposition for Multi-agent Predictive State Representation

论文作者

Chen, Bilian, Ma, Biyang, Zeng, Yifeng, Cao, Langcai, Tang, Jing

论文摘要

预测状态表示〜(PSR)使用动作观察序列的向量来表示系统动力学,并随后预测未来事件的概率。这是一种简洁的知识表示,在单一试验计划问题域中对其进行了很好的研究。据我们所知,尚无关于使用PSR解决多代理计划问题的现有工作。学习多代理PSR模型非常困难,尤其是随着代理数量的增加,更不用说问题域的复杂性了。在本文中,我们采取张量技术来解决多代理PSR模型开发问题的具有挑战性的任务。首先将重点放在两个代理设置上,我们分别通过两种不同的张量分解方法来构建系统动力学矩阵作为PSR模型的高阶张量,学习预测参数并直接推导状态向量,并通过线性回归得出过渡参数。随后,我们将PSR学习方法推广到多代理设置。实验结果表明,我们的方法可以有效地解决多个问题域中的多代理PSR建模问题。

Predictive state representation~(PSR) uses a vector of action-observation sequence to represent the system dynamics and subsequently predicts the probability of future events. It is a concise knowledge representation that is well studied in a single-agent planning problem domain. To the best of our knowledge, there is no existing work on using PSR to solve multi-agent planning problems. Learning a multi-agent PSR model is quite difficult especially with the increasing number of agents, not to mention the complexity of a problem domain. In this paper, we resort to tensor techniques to tackle the challenging task of multi-agent PSR model development problems. By first focusing on a two-agent setting, we construct the system dynamics matrix as a high order tensor for a PSR model, learn the prediction parameters and deduce state vectors directly through two different tensor decomposition methods respectively, and derive the transition parameters via linear regression. Subsequently, we generalize the PSR learning approaches in a multi-agent setting. Experimental results show that our methods can effectively solve multi-agent PSR modelling problems in multiple problem domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源