论文标题

无尺度跨越树:复杂性,界限和算法

Scale-free spanning trees: complexity, bounds and algorithms

论文作者

Orlovich, Yury, Kukharenko, Kirill, Kaibel, Volker, Skums, Pavel

论文摘要

我们介绍并研究了找到连接图的最“无尺度”跨越树的一般问题。它是由流行病学特定问题的动机,并且可能在对网络中各种动力学过程的研究中有用。我们在此问题上采用了两个可能的目标功能,并介绍了所谓的$ m $ -sf和$ s $ -s -SF跨越树问题的相应算法问题。我们证明,这些问题分别是APX和NP-螺态,即使在立方,两部分和拆分图的类别中也是如此。我们研究了无尺度跨越树问题与最大叶片跨越树问题之间的关系,这是最接近我们的经典算法问题。对于拆分图,我们明确描述了具有极端解决方案的最佳跨越树和图形的结构。最后,我们提出了两个整数线性编程公式和两种$ S $ -SF跨越树问题的快速启发式方法,并使用模拟和真实数据在实验中评估其性能。

We introduce and study the general problem of finding a most "scale-free-like" spanning tree of a connected graph. It is motivated by a particular problem in epidemiology, and may be useful in studies of various dynamical processes in networks. We employ two possible objective functions for this problem and introduce the corresponding algorithmic problems termed $m$-SF and $s$-SF Spanning Tree problems. We prove that those problems are APX- and NP-hard, respectively, even in the classes of cubic, bipartite and split graphs. We study the relations between scale-free spanning tree problems and the max-leaf spanning tree problem, which is the classical algorithmic problem closest to ours. For split graphs, we explicitly describe the structure of optimal spanning trees and graphs with extremal solutions. Finally, we propose two Integer Linear Programming formulations and two fast heuristics for the $s$-SF Spanning Tree problem, and experimentally assess their performance using simulated and real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源