论文标题
从92个晶体结构中揭示SARS-COV-2主蛋白酶抑制的分子机制
Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 92 crystal structures
论文作者
论文摘要
当前,尚无急性呼吸综合征冠状病毒2(SARS-COV-2)引起的冠状病毒病(COVID-19)的有效抗病毒药或疫苗。由于其与人类基因的高保守性和低相似性,SARS-COV-2主要蛋白酶(M $^{\ text {pro}} $)是最有利的药物靶标之一。但是,当前对M $^{\ text {pro}} $抑制的分子机制的理解受到缺乏可靠的结合亲和力排名和对M $ $ $^{\ text {pro}} $抑制剂复合物的现有结构的预测的限制。这项工作集成了数学和深度学习(MATHDL),以提供92个SARS-COV-2 M $^{\ text {pro}} $抑制剂结构的可靠排名。我们揭示了M $^{\ Text {Pro}} $中的Gly143残留物是形成氢键的最吸引人的站点,其次是Cys145,Glu166和His163。我们还确定了45个靶向共价键抑制剂。 PDBBIND V2016 CORE SET基准测试的验证表明,MathDL已获得最高性能,Pearson的相关系数($ R_P $)为0.858。最重要的是,MathDL在经过精心策划的SARS-COV-2抑制剂数据集上进行了验证,其平均$ R_P $高达0.751,这赋予了当前绑定亲和力预测的可靠性。当前的结合亲和力排名,相互作用分析和碎片分解为未来的药物发现工作奠定了基础。
Currently, there is no effective antiviral drugs nor vaccine for coronavirus disease 2019 (COVID-19) caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to its high conservativeness and low similarity with human genes, SARS-CoV-2 main protease (M$^{\text{pro}}$) is one of the most favorable drug targets. However, the current understanding of the molecular mechanism of M$^{\text{pro}}$ inhibition is limited by the lack of reliable binding affinity ranking and prediction of existing structures of M$^{\text{pro}}$-inhibitor complexes. This work integrates mathematics and deep learning (MathDL) to provide a reliable ranking of the binding affinities of 92 SARS-CoV-2 M$^{\text{pro}}$ inhibitor structures. We reveal that Gly143 residue in M$^{\text{pro}}$ is the most attractive site to form hydrogen bonds, followed by Cys145, Glu166, and His163. We also identify 45 targeted covalent bonding inhibitors. Validation on the PDBbind v2016 core set benchmark shows the MathDL has achieved the top performance with Pearson's correlation coefficient ($R_p$) being 0.858. Most importantly, MathDL is validated on a carefully curated SARS-CoV-2 inhibitor dataset with the averaged $R_p$ as high as 0.751, which endows the reliability of the present binding affinity prediction. The present binding affinity ranking, interaction analysis, and fragment decomposition offer a foundation for future drug discovery efforts.