论文标题

使用学识渊博的代理商期货模型对自动驾驶汽车的快速风险评估

Fast Risk Assessment for Autonomous Vehicles Using Learned Models of Agent Futures

论文作者

Wang, Allen, Huang, Xin, Jasour, Ashkan, Williams, Brian

论文摘要

本文提出了基于快速的非采样方法,以评估自动驾驶汽车的轨迹风险,当时对其他代理人期货的概率预测是由深神经网络(DNNS)产生的。提出的方法介绍了不确定预测的广泛表示形式,包括高斯和非高斯混合模型,以预测试剂位置和对照。我们表明,使用现有数值方法可以快速求解,可以迅速将剂量位置的高斯混合模型(GMM)迅速解决至任意水平的准确性水平时,风险评估的问题。为了解决代理位置非高斯混合物模型的风险评估问题,我们建议使用Chebyshev的不平等和平方和总和(SOS)编程来寻找上限的风险;他们都很有趣,因为前者更快得多,而后者可以任意紧密。这些方法仅需要统计矩位位置的统计矩即可确定风险上的上限。为了在为代理控制而不是位置学习模型时进行风险评估,我们开发了一种类似于树木搜索多项式搜索的算法,该算法可用于通过非线性动力学来准确地将控制分布的时刻传播到位置分布中。提出的方法是在经过argverse和carla数据集训练的DNN的现实预测上证明的,并被证明可有效评估低概率事件的概率。

This paper presents fast non-sampling based methods to assess the risk of trajectories for autonomous vehicles when probabilistic predictions of other agents' futures are generated by deep neural networks (DNNs). The presented methods address a wide range of representations for uncertain predictions including both Gaussian and non-Gaussian mixture models for predictions of both agent positions and controls. We show that the problem of risk assessment when Gaussian mixture models (GMMs) of agent positions are learned can be solved rapidly to arbitrary levels of accuracy with existing numerical methods. To address the problem of risk assessment for non-Gaussian mixture models of agent position, we propose finding upper bounds on risk using Chebyshev's Inequality and sums-of-squares (SOS) programming; they are both of interest as the former is much faster while the latter can be arbitrarily tight. These approaches only require statistical moments of agent positions to determine upper bounds on risk. To perform risk assessment when models are learned for agent controls as opposed to positions, we develop TreeRing, an algorithm analogous to tree search over the ring of polynomials that can be used to exactly propagate moments of control distributions into position distributions through nonlinear dynamics. The presented methods are demonstrated on realistic predictions from DNNs trained on the Argoverse and CARLA datasets and are shown to be effective for rapidly assessing the probability of low probability events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源