论文标题
相互作用网络:非共价蛋白质 - 配体与非共价图神经网络的建模和解释
InteractionNet: Modeling and Explaining of Noncovalent Protein-Ligand Interactions with Noncovalent Graph Neural Network and Layer-Wise Relevance Propagation
论文作者
论文摘要
将基于图的深度学习模型扩展到非共价蛋白质配体相互作用的范围引起了人们对基于结构的药物设计的越来越多的关注。建模与图神经网络(GNN)的蛋白质配体相互作用在蛋白质配体复杂结构转化为图表中遇到了困难,并留下了有关训练有素模型是否正确学习适当的非共价相互作用的问题。在这里,我们提出了一种被称为InteractionNet的GNN结构,该结构通过不同的卷积层学习了两个分离的分子图,共价和非共价。我们还使用解释性技术(即层面相关性传播)分析了相互作用网络模型,以检查模型预测的化学相关性。共价和非共价卷积步骤的分离使得独立评估每个步骤的贡献并分析了非共价相互作用的图形建设策略成为可能。我们将相互作用网络应用于蛋白质 - 配体结合亲和力的预测,并表明我们的模型成功地预测了化学解释中性能和相关性的非共价相互作用。
Expanding the scope of graph-based, deep-learning models to noncovalent protein-ligand interactions has earned increasing attention in structure-based drug design. Modeling the protein-ligand interactions with graph neural networks (GNNs) has experienced difficulties in the conversion of protein-ligand complex structures into the graph representation and left questions regarding whether the trained models properly learn the appropriate noncovalent interactions. Here, we proposed a GNN architecture, denoted as InteractionNet, which learns two separated molecular graphs, being covalent and noncovalent, through distinct convolution layers. We also analyzed the InteractionNet model with an explainability technique, i.e., layer-wise relevance propagation, for examination of the chemical relevance of the model's predictions. Separation of the covalent and noncovalent convolutional steps made it possible to evaluate the contribution of each step independently and analyze the graph-building strategy for noncovalent interactions. We applied InteractionNet to the prediction of protein-ligand binding affinity and showed that our model successfully predicted the noncovalent interactions in both performance and relevance in chemical interpretation.