论文标题
基于实验电子密度的基于冷冻密度嵌入理论的模拟
Frozen-Density Embedding Theory based simulations with experimental electron densities
论文作者
论文摘要
冷冻密度嵌入理论(FDET)的基本思想是hohenberg-kohn密度功能$ e^{hk} [ρ] $使用辅助功能$ e_ { $ n_a $ - 电子波功能和$ρ_b(\ vec {\ mathrm {r}})$在真实空间中的非负函数集成到给定数量的电子$ n_b $。总能量功能$ e_ {v_ {ab}}^{fdet} [ψ_a,ρ_b] $中的自变量选择使得使用多级模拟中的不同方法来处理总密度的相应两个组件。我们首次证明了使用$ρ_b(\ vec {\ mathrm {r}})$从分子晶体上重建的FDET应用程序。对于涉及发色团(以$ψ_A$表示)和糖基甘氨酸分子(表示为$ρ_b(\ vec {\ vec {\ mathrm {r}})$)的八个氢键簇(用$ψ_A$)(代表),FDET可用于得出激发能。结果表明,在基于FDET的仿真中,实验密度适合用作$ρ_B(\ vec {\ mathrm {r}})$。
The basic idea of Frozen-Density Embedding Theory (FDET) is the constrained minimisation of the Hohenberg-Kohn density functional $E^{HK}[ρ]$ performed using the auxiliary functional $E_{v_{AB}}^{FDET}[Ψ_A,ρ_B]$, where $Ψ_A$ is the embedded $N_A$-electron wave-function and $ρ_B(\vec{\mathrm{r}})$ a non-negative function in real space integrating to a given number of electrons $N_B$. This choice of independent variables in the total energy functional $E_{v_{AB}}^{FDET}[Ψ_A,ρ_B]$ makes it possible to treat the corresponding two components of the total density using different methods in multi-level simulations. We demonstrate, for the first time, the applications of FDET using $ρ_B(\vec{\mathrm{r}})$ reconstructed from X-ray diffraction data on a molecular crystal. For eight hydrogen-bonded clusters involving a chromophore (represented with $Ψ_A$) and the glycylglycine molecule (represented as $ρ_B(\vec{\mathrm{r}})$), FDET is used to derive excitation energies. It is shown that experimental densities are suitable to be used as $ρ_B(\vec{\mathrm{r}})$ in FDET based simulations.