论文标题
通过SERRE子类别对外节类别的类别进行分类
Classifying substructures of extriangulated categories via Serre subcategories
论文作者
论文摘要
我们通过使用缺陷类别对给定的骨骼骨骼小的外侧类别进行分类(= =封闭的副函数),其方式与作者对给定添加剂类别的确切结构的分类类似。更确切地说,对于外侧类别,可能的子结构与Abelian类别的serre子类别进行了培养,该类别由混合缺陷组成。作为副产品,我们证明,对于给定的骨骼较小的加性类别,其上面的精确结构的poset与某些Abelian类别的Serre子类别的poset是同构。
We give a classification of substructures (= closed subbifunctors) of a given skeletally small extriangulated category by using the category of defects, in a similar way to the author's classification of exact structures of a given additive category. More precisely, for an extriangulated category, possible substructures are in bijection with Serre subcategories of an abelian category consisting of defects of conflations. As a byproduct, we prove that for a given skeletally small additive category, the poset of exact structures on it is isomorphic to the poset of Serre subcategories of some abelian category.