论文标题

在斯洛文尼亚社交网络上对COVID-19的模拟:估计内在预测不确定性

Simulation of the COVID-19 pandemic on the social network of Slovenia: estimating the intrinsic forecast uncertainty

论文作者

Zaplotnik, Ziga, Gavric, Aleksandar, Medic, Luka

论文摘要

在本文中,在简化的社交网络上构建了病毒传播模型。社交网络由超过200万个节点组成,每个节点代表斯洛文尼亚的居民。节点是根据真实家庭和老年人护理中心分布组织和互连的,而它们在这些群集之外的连接是半随机分布和完全链接的。病毒扩散模型与疾病进展模型耦合。与扰动的传播和疾病参数的合奏方法用于量化集成差,这是预测不确定性的代理。比较了斯洛文尼亚的Covid-19流行病的持续预测与所收集的斯洛文尼亚数据进行了比较。结果表明,目前感染在家庭/老年护理中心内传播的可能性是外部的两倍。我们使用模拟集合(n = 1000)代表模型参数的后验分布,并估算COVID-19的预测不确定性。我们发现,在不受控制的流行病中,固有的不确定性主要源自病毒生物学的不确定性,即其生殖数量。在受感染人群比率较低的受控流行病中,社交网络的随机性成为预测不确定性的主要来源,特别是对于短期预测。因此,基于社会网络的模型对于改善流行病的预测至关重要。

In the article a virus transmission model is constructed on a simplified social network. The social network consists of more than 2 million nodes, each representing an inhabitant of Slovenia. The nodes are organised and interconnected according to the real household and elderly-care center distribution, while their connections outside these clusters are semi-randomly distributed and fully-linked. The virus spread model is coupled to the disease progression model. The ensemble approach with the perturbed transmission and disease parameters is used to quantify the ensemble spread, a proxy for the forecast uncertainty. The presented ongoing forecasts of COVID-19 epidemic in Slovenia are compared with the collected Slovenian data. Results show that infection is currently twice more likely to transmit within households/elderly care centers than outside them. We use an ensemble of simulations (N = 1000) to inversely obtain posterior distributions of model parameters and to estimate the COVID-19 forecast uncertainty. We found that in the uncontrolled epidemic, the intrinsic uncertainty mostly originates from the uncertainty of the virus biology, i.e. its reproductive number. In the controlled epidemic with low ratio of infected population, the randomness of the social network becomes the major source of forecast uncertainty, particularly for the short-range forecasts. Social-network-based models are thus essential for improving epidemics forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源