论文标题

在存在协变量的情况下,非米诺主和伪非局部方法用于最佳顺序设计

Nonmyopic and pseudo-nonmyopic approaches to optimal sequential design in the presence of covariates

论文作者

Tackney, Mia S., Woods, David C., Shpitser, Ilya

论文摘要

在顺序实验中,受试者可以在一段时间内进行研究,并且在到达时经常测量协变量。我们考虑样本量固定的设置,但在受试者注册之前,协变量值未知。给定结果模型,可以使用顺序最佳设计方法来分配治疗方法,以最大程度地减少治疗效果的方差。我们扩展了现有的最佳设计方法,因此可以在非米型框架内使用,在该框架中,当前受试者的治疗分配不仅取决于已经参与研究的受试者的治疗和协变量,还取决于可能的未来治疗分配的影响。非主管方法在计算上是昂贵的,因为它需要递归公式。我们提出了一种伪非局部方法,该方法具有与非近地方法相似的目的,但不涉及递归,而是依赖于对未来可能的决策的模拟。我们的仿真研究表明,近视方法是单个二元协变量和二元处理的逻辑模型案例最有效的。

In sequential experiments, subjects become available for the study over a period of time, and covariates are often measured at the time of arrival. We consider the setting where the sample size is fixed but covariate values are unknown until subjects enrol. Given a model for the outcome, a sequential optimal design approach can be used to allocate treatments to minimize the variance of the treatment effect. We extend existing optimal design methodology so it can be used within a nonmyopic framework, where treatment allocation for the current subject depends not only on the treatments and covariates of the subjects already enrolled in the study, but also the impact of possible future treatment assignments. The nonmyopic approach is computationally expensive as it requires recursive formulae. We propose a pseudo-nonmyopic approach which has a similar aim to the nonmyopic approach, but does not involve recursion and instead relies on simulations of future possible decisions. Our simulation studies show that the myopic approach is the most efficient for the logistic model case with a single binary covariate and binary treatment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源