论文标题

学会从未对准和部分标签中细分

Learning to segment from misaligned and partial labels

论文作者

Fobi, Simone, Conlon, Terence, Taneja, Jayant, Modi, Vijay

论文摘要

为了大规模提取信息,研究人员越来越多地将语义分割技术应用于遥感图像。虽然完全监督的学习可以准确地通过像素细分,但编译所需的详尽数据集通常非常昂贵。结果,许多非城市设置缺乏准确分割所需的基础真相。这些区域的现有开源基础架构数据可能是不精确的,也不是无尽的。开源基础架构注释(例如OpenStreetMaps(OSM))代表了此问题:虽然OSM标签为道路和建筑足迹提供了全球见解,但嘈杂和部分注释限制了从中学习的细分算法的性能。在本文中,我们提出了一个新颖且可推广的两阶段框架,该框架可以改进像素图像分割,鉴于未对准和缺失的注释。首先,我们介绍对齐校正网络,以纠正错误注册的开源标签。接下来,我们演示了一个分割模型 - 指针分割网络 - 尽管缺少注释,但它使用校正的标签来预测基础架构足迹。我们在AIRS数据集上测试顺序性能,达到0.79的平均相交得分;更重要的是,随着我们减少存在的注释的比例,模型性能保持稳定。我们通过将对齐校正网络应用于OSM标签来纠正构建足迹,从而证明了我们的方法向降低质量数据的转移性;我们还证明了指针分割网络在中等分辨率数据中预测加利福尼亚州农田边界方面的准确性。总体而言,我们的方法对于具有不同量的培训数据的多个应用程序具有鲁棒性,因此提供了一种从嘈杂的部分数据中提取可靠信息的方法。

To extract information at scale, researchers increasingly apply semantic segmentation techniques to remotely-sensed imagery. While fully-supervised learning enables accurate pixel-wise segmentation, compiling the exhaustive datasets required is often prohibitively expensive. As a result, many non-urban settings lack the ground-truth needed for accurate segmentation. Existing open source infrastructure data for these regions can be inexact and non-exhaustive. Open source infrastructure annotations like OpenStreetMaps (OSM) are representative of this issue: while OSM labels provide global insights to road and building footprints, noisy and partial annotations limit the performance of segmentation algorithms that learn from them. In this paper, we present a novel and generalizable two-stage framework that enables improved pixel-wise image segmentation given misaligned and missing annotations. First, we introduce the Alignment Correction Network to rectify incorrectly registered open source labels. Next, we demonstrate a segmentation model -- the Pointer Segmentation Network -- that uses corrected labels to predict infrastructure footprints despite missing annotations. We test sequential performance on the AIRS dataset, achieving a mean intersection-over-union score of 0.79; more importantly, model performance remains stable as we decrease the fraction of annotations present. We demonstrate the transferability of our method to lower quality data, by applying the Alignment Correction Network to OSM labels to correct building footprints; we also demonstrate the accuracy of the Pointer Segmentation Network in predicting cropland boundaries in California from medium resolution data. Overall, our methodology is robust for multiple applications with varied amounts of training data present, thus offering a method to extract reliable information from noisy, partial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源