论文标题

ExtrexçãoeeClassificaçãodecaracterísticasradiômicasem gliomas de baixo grau paraanálisedacodeleção1p/19q

Extração e Classificação de Características Radiômicas em Gliomas de Baixo Grau para Análise da Codeleção 1p/19q

论文作者

Silva, Tony Alexandre Medeiros, Cassia, Guilherme Sousa, Carvalho, João Luiz Azevedo

论文摘要

放射线学是一个新兴区域,它提出了大量的计算方法和技术,可以从磁共振图像中提取定量特征。在特征提取阶段,必须对其输出进行良好的定义和仔细评估,以提供成像诊断,预后和对治疗疗法的反应。在这项研究中,我们介绍了使用Pyradiomics库中磁共振图像从磁共振图像中提取定量特征,并使用多层感知型神经网络,我们将展示这些Gliomas中1P / 19Q染色体的删除的预测。几项研究表明,1p / 19q染色体代码选择是低度神经胶质瘤的阳性预后因素,因为它们对化学疗法更敏感。由于提取的特征数量众多,因此有必要使用降低降低技术(分析原理成分),这在本研究中被证明是有效的。在训练和测试多层感知神经网络执行的特征之后,结果显示在检测染色体1p / 19q的缺失状态时非常有前途,主要考虑到避免手术活检的可能性。

Radiomics is an emerging area, which presents a large set of computational methods and techniques to extract quantitative characteristics from magnetic resonance images. In the feature extraction stage, its outputs must be well defined and carefully evaluated, to provide imaging diagnostics, prognoses and responses to treatment therapies. In this study, we present the extraction of quantitative characteristics from magnetic resonance images in low-grade gliomas using the Pyradiomics library and, using a multilayer perceptron neural network, we will show the prediction of the deletion of the 1p / 19q chromosomes in these gliomas. Several studies show that 1p / 19q chromosomal codelection is a positive prognostic factor in low-grade gliomas, as they are more sensitive to chemotherapy. Due to the large number of extracted characteristics, it was necessary to use a dimensionality reduction technique, the analysis principal components, which proved to be efficient in this study. After training and testing the characteristics performed by the multilayer perceptron neural network, the results showed to be very promising in detecting the deletion status of chromosomes 1p / 19q, mainly taking into account the possibility of avoiding surgical biopsies for this diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源