论文标题
Instantons和Khovanov skein同源$ i \ times t^2 $
Instantons and Khovanov skein homology on $I\times T^2$
论文作者
论文摘要
Asaeda,Przytycki和Sikora定义了Khovanov同源性在紧凑型表面上以$ i $捆绑的链接的概括。我们证明,对于链接,$ l \ subset(-1,1)\ times t^2 $,$ l $的asaeda-przytycki-sikora同源性的同源性的$ 2 $,$ \ m \ althbb {z}/2 $ -coefficients,仅当$ l $对$ l $而言是同类$ n $ n obsedded $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {0
Asaeda, Przytycki and Sikora defined a generalization of Khovanov homology for links in $I$-bundles over compact surfaces. We prove that for a link $L\subset (-1,1)\times T^2$, the Asaeda-Przytycki-Sikora homology of $L$ has rank $2$ with $\mathbb{Z}/2$-coefficients if and only if $L$ is isotopic to an embedded knot in $\{0\}\times T^2$.