论文标题

傅立叶插值和时频定位

Fourier interpolation and time-frequency localization

论文作者

Kulikov, Aleksei

论文摘要

我们证明,在非常轻微的条件下,对于任何插值公式$ f(x)= \ sum_ {λ\inλ} f(λ)a_λ(x) + sum_ + sum_ {μ\ in m} \ hat {f} \ hat {f}(f}(μ)b_μ)b_(x)$,我们对数量的计数_2 4R_1R_2 -C \ log^{2+ \ Varepsilon}(4R_1R_2)$,与Radchenko和Viazovska和Bondarenko,Radchenko和Seip发现的插值非常匹配。

We prove that under very mild conditions for any interpolation formula $f(x) = \sum_{λ\in Λ} f(λ)a_λ(x) + \sum_{μ\in M} \hat{f}(μ)b_μ(x)$ we have a lower bound for the counting functions $n_Λ(R_1) + n_{M}(R_2) \ge 4R_1R_2 - C\log^{2+\varepsilon}(4R_1R_2)$ which very closely matches interpolation formulas discovered by Radchenko and Viazovska and by Bondarenko, Radchenko and Seip.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源