论文标题
通过等离子体晶体的波传递中的有限大小效应:两个尺度的故事
Finite-size effects in wave transmission through plasmonic crystals: A tale of two scales
论文作者
论文摘要
我们研究了通过称为等离子晶体的分层结构来表征波传播的光学系数。这些由有限数量的堆叠金属板组成,这些金属板嵌入了介电宿主中,并具有下波长的间距。通过调整频率,间距,数量以及层的几何形状,这些结构可能在从Terahertz到中红外机制的一系列频率中表现出吸引力的传输特性。我们的方法将分析和数值方法的混合物与无限,翻译不变的,平面和纳米骨的不同几何形状进行了混合。我们描述了平面波通过等离激元晶体的传输,与在零层间间距为零的极限的情况下,具有相等厚度的有效介电板。我们从数值上证明,离散等离子晶体通过其均质的等离子晶体替换可以准确捕获类似于灭绝频谱的传输系数,即使对于相对较少的层也是如此。我们指出了几何依赖性校正器场的作用,该校正原场表达了亚波长表面等离子体的作用。特别是,通过使用校正器,我们描述了纳米苯固有的几何形状固有的侧向共振。
We study optical coefficients that characterize wave propagation through layered structures called plasmonic crystals. These consist of a finite number of stacked metallic sheets embedded in dielectric hosts with a subwavelength spacing. By adjustment of the frequency, spacing, number as well as geometry of the layers, these structures may exhibit appealing transmission properties in a range of frequencies from the terahertz to the mid-infrared regime. Our approach uses a blend of analytical and numerical methods for the distinct geometries with infinite, translation invariant, flat sheets and nanoribbons. We describe the transmission of plane waves through a plasmonic crystal in comparison to an effective dielectric slab of equal total thickness that emerges from homogenization, in the limit of zero interlayer spacing. We demonstrate numerically that the replacement of the discrete plasmonic crystal by its homogenized counterpart can accurately capture a transmission coefficient akin to the extinction spectrum, even for a relatively small number of layers. We point out the role of a geometry-dependent corrector field, which expresses the effect of subwavelength surface plasmons. In particular, by use of the corrector we describe lateral resonances inherent to the nanoribbon geometry.