论文标题
腔量子电磁孔:量子基态下的微波电气转换
Cavity quantum electro-optics: Microwave-telecom conversion in the quantum ground state
论文作者
论文摘要
光纤通信是我们现代信息社会的骨干,提供高带宽,低损失,体重,大小和成本,以及对电磁干扰的免疫力。微波光子学将这些优势带入了电子传感和通信系统,但是与非线性光学的领域不同,到目前为止,电磁设备需要经典的调制场,其方差由电子或热噪声而不是量子波动主导。在这里,我们提出一个在Millikelvin环境中运行的空腔电磁收发器,其模式占用率低至0.025 $ \ pm $ 0.005噪声光子。我们的系统基于Niobate锂窃窃库模式的谐振器,通过Pockels效应与超导腔偶联。对于1.48 MW的最高连续波泵功率,我们证明了X带微波炉向C带电信光的双向单层带转换,总(内部)效率为0.03%(0.7%),增加的输出转换噪声为5.5光子。高带宽为10.7 MHz,结合了观察到的非常缓慢的加热速率为1.1噪声光子S $^{ - 1} $ puts量子限制脉冲脉冲微波磁镜转换。所呈现的设备具有多功能性,并且与超导码头兼容,这可能为微波和光场之间的快速和确定性纠缠分布开辟了道路,用于光学介导的超导缸的光学远程纠缠,以及新的多重低温电路控制和读取策略。
Fiber optic communication is the backbone of our modern information society, offering high bandwidth, low loss, weight, size and cost, as well as an immunity to electromagnetic interference. Microwave photonics lends these advantages to electronic sensing and communication systems, but - unlike the field of nonlinear optics - electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $\pm$ 0.005 noise photons. Our system is based on a lithium niobate whispering gallery mode resonator, resonantly coupled to a superconducting microwave cavity via the Pockels effect. For the highest continuous wave pump power of 1.48 mW we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a total (internal) efficiency of 0.03 % (0.7 %) and an added output conversion noise of 5.5 photons. The high bandwidth of 10.7 MHz combined with the observed very slow heating rate of 1.1 noise photons s$^{-1}$ puts quantum limited pulsed microwave-optics conversion within reach. The presented device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields, for optically mediated remote entanglement of superconducting qubits, and for new multiplexed cryogenic circuit control and readout strategies.