论文标题

用于个性化服装推荐的分层时尚图网络

Hierarchical Fashion Graph Network for Personalized Outfit Recommendation

论文作者

Li, Xingchen, Wang, Xiang, He, Xiangnan, Chen, Long, Xiao, Jun, Chua, Tat-Seng

论文摘要

时尚服装的建议吸引了在线购物服务和时尚社区的越来越注意。从其他场景(例如社交网络或内容共享)中呈现,向用户推荐一个项目(例如,朋友或图片),对用户的建议建议可以预测用户对用户的偏爱,对一组良好的时尚性和良好的质量构成,并满足良好的质量效果。 2)与用户偏好一致。但是,当前的工作主要集中在一个要求上,仅考虑用户装备或服装 - 项目关系,从而很容易导致次优表示并限制性能。在这项工作中,我们统一了两项任务:时尚兼容性建模和个性化服装建议。为此,我们开发了一个新的框架,分层时尚图网络(HFGN),以同时建模用户,项目和服装之间的关系。特别是,我们在用户服装交互和服装 - 项目映射上构建了层次结构。然后,我们从最近的图形神经网络中获得灵感,并在此类层次图上采用嵌入式传播,以将项目信息汇总到服装表示中,然后通过其历史服装来完善用户的表示。此外,我们共同训练这两个任务以优化这些表示。为了证明HFGN的有效性,我们在基准数据集上进行了广泛的实验,并且HFGN比最新的兼容性匹配模型(如NGNN和FHN)等最先进的兼容性匹配模型可取得重大改进。

Fashion outfit recommendation has attracted increasing attentions from online shopping services and fashion communities.Distinct from other scenarios (e.g., social networking or content sharing) which recommend a single item (e.g., a friend or picture) to a user, outfit recommendation predicts user preference on a set of well-matched fashion items.Hence, performing high-quality personalized outfit recommendation should satisfy two requirements -- 1) the nice compatibility of fashion items and 2) the consistence with user preference. However, present works focus mainly on one of the requirements and only consider either user-outfit or outfit-item relationships, thereby easily leading to suboptimal representations and limiting the performance. In this work, we unify two tasks, fashion compatibility modeling and personalized outfit recommendation. Towards this end, we develop a new framework, Hierarchical Fashion Graph Network(HFGN), to model relationships among users, items, and outfits simultaneously. In particular, we construct a hierarchical structure upon user-outfit interactions and outfit-item mappings. We then get inspirations from recent graph neural networks, and employ the embedding propagation on such hierarchical graph, so as to aggregate item information into an outfit representation, and then refine a user's representation via his/her historical outfits. Furthermore, we jointly train these two tasks to optimize these representations. To demonstrate the effectiveness of HFGN, we conduct extensive experiments on a benchmark dataset, and HFGN achieves significant improvements over the state-of-the-art compatibility matching models like NGNN and outfit recommenders like FHN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源