论文标题
保持简单:图像统计信息匹配域适应
Keep it Simple: Image Statistics Matching for Domain Adaptation
论文作者
论文摘要
应用对象检测器,该对象检测器既不经过培训,也不会在接近最终应用程序的数据上进行微调,这通常会导致性能下降。为了克服这个问题,有必要考虑源域和目标域之间的变化。解决这一转变被称为域适应(DA)。在这项工作中,我们专注于无监督的DA:仅当目标域可用未标记的图像时,保持不同数据分布的检测准确性。最近的最新方法试图使用对抗性训练策略来减少域间隙,从而提高性能,同时训练程序的复杂性。相比之下,我们从新的角度看待问题,并通过仅匹配源域和目标域之间的图像统计信息来保持简单。我们建议将源图像的颜色直方图或均值和协方差与目标结构域保持一致。因此,在没有建筑附加组件和其他超参数的情况下完成了DA。通过评估公共数据集的不同域移动方案来证明方法的好处。与最近的方法相比,我们使用更简单的培训程序实现了最先进的绩效。此外,我们表明,应用我们的技术会大大减少学习通用模型所需的合成数据量,从而增加了模拟的价值。
Applying an object detector, which is neither trained nor fine-tuned on data close to the final application, often leads to a substantial performance drop. In order to overcome this problem, it is necessary to consider a shift between source and target domains. Tackling the shift is known as Domain Adaptation (DA). In this work, we focus on unsupervised DA: maintaining the detection accuracy across different data distributions, when only unlabeled images are available of the target domain. Recent state-of-the-art methods try to reduce the domain gap using an adversarial training strategy which increases the performance but at the same time the complexity of the training procedure. In contrast, we look at the problem from a new perspective and keep it simple by solely matching image statistics between source and target domain. We propose to align either color histograms or mean and covariance of the source images towards the target domain. Hence, DA is accomplished without architectural add-ons and additional hyper-parameters. The benefit of the approaches is demonstrated by evaluating different domain shift scenarios on public data sets. In comparison to recent methods, we achieve state-of-the-art performance using a much simpler procedure for the training. Additionally, we show that applying our techniques significantly reduces the amount of synthetic data needed to learn a general model and thus increases the value of simulation.