论文标题

纠缠熵的线性响应理论

Linear Response Theory of Entanglement Entropy

论文作者

Wang, Yuan-Sheng, Ma, Teng, Yung, Man-Hong

论文摘要

线性响应理论(LRT)是研究量子物质的关键工具,对于弱探针干扰的量子系统,它将可观察到的实验性动力学与未探测平衡状态的相关函数联系起来。纠缠熵(EE)是量子纠缠的量度,它是量子物理学和量子信息科学的非常重要的数量。尽管EE不是可观察的,但开发它的LRT是一件有趣的事情。在这项工作中,我们为开放量子系统开发了von Neumann熵的LRT。此外,我们发现von Neumann纠缠熵的线性响应取决于可观察的线性响应。使用此可观察到的,我们定义了EE的Kubo公式和易感性,EE具有相同的常规对应物。通过使用EE的LRT,我们进一步发现,对于最大纠缠或可分离状态,EE的线性响应将为零,这是纠缠动力学的独特特征。还使用XX自旋链模型给出了我们分析推导的数值验证。 EE的LRT为研究和理解EE提供了有用的工具。

Linear response theory (LRT) is a key tool in investigating the quantum matter, for quantum systems perturbed by a weak probe, it connects the dynamics of experimental observable with the correlation function of unprobed equilibrium states. Entanglement entropy(EE) is a measure of quantum entanglement, it is a very important quantity of quantum physics and quantum information science. While EE is not an observable, developing the LRT of it is an interesting thing. In this work, we develop the LRT of von Neumann entropy for an open quantum system. Moreover, we found that the linear response of von Neumann entanglement entropy is determined by the linear response of an observable. Using this observable, we define the Kubo formula and susceptibility of EE, which have the same properties of its conventional counterpart. Through using the LRT of EE, we further found that the linear response of EE will be zero for maximally entangled or separable states, this is a unique feature of entanglement dynamics. A numerical verification of our analytical derivation is also given using XX spin chain model. The LRT of EE provides a useful tool in investigating and understanding EE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源