论文标题
具有理想自相关的部分直接产品差异集和序列
Partial direct product difference sets and sequences with ideal autocorrelation
论文作者
论文摘要
在本文中,我们研究了(非连续的)两个零符号和理想的自相关的序列,它们也称为几乎$ m $ - yr-ar的几乎完美序列。我们表明,这些序列相当于$ \ ell $ - $ - $ - 当时的直接产品差异集(PDPDS),然后我们将两个连续的零符号的序列上的已知结果扩展到非连续情况。接下来,我们研究了$ \ ell $ -pdpds的乘数和轨道组合的概念。最后,我们通过使用循环类别的类别提出了一种具有理想自相关的几乎第四纪序列家族的施工方法。
In this paper, we study the sequences with (non-consecutive) two zero-symbols and ideal autocorrelation, which are also known as almost $m$-ary nearly perfect sequences. We show that these sequences are equivalent to $\ell$-partial direct product difference sets (PDPDS), then we extend known results on the sequences with two consecutive zero-symbols to non-consecutive case. Next, we study the notion of multipliers and orbit combination for $\ell$-PDPDS. Finally, we present a construction method for a family of almost quaternary sequences with ideal autocorrelation by using cyclotomic classes.