论文标题
密度为零理想的概括
A generalization of the density zero ideal
论文作者
论文摘要
令$ \ Mathscr {f} =(f_n)$为$ω$的一系列非空的有限子集,使得$ \ lim_n | f_n | = \ infty $并定义了理想的$ \ mathcal {i}(i} f_n |/| f_n | \ to 0〜 \ mbox {as} 〜n \ to \ infty \ right \}。我们表明,$ \ Mathcal {i}(\ Mathscr {f})$是一个分析性的p-思想,但不是$f_σ$。结果,我们表明,$ \ MATHCAL {i}(\ MATHSCR {f})$ - 收敛到$ 0 $的真实有限序列集未用$ \ ell_ \ infty $补充。
Let $\mathscr{F}=(F_n)$ be a sequence of nonempty finite subsets of $ω$ such that $\lim_n |F_n|=\infty$ and define the ideal $$\mathcal{I}(\mathscr{F}):=\left\{A\subseteq ω: |A\cap F_n|/|F_n|\to 0~\mbox{as}~n\to \infty \right\}.$$ The case $F_n=\{1,\ldots,n\}$ corresponds to the classical case of density zero ideal. We show that $\mathcal{I}(\mathscr{F})$ is an analytic P-ideal but not $F_σ$. As a consequence, we show that the set of real bounded sequences which are $\mathcal{I}(\mathscr{F})$-convergent to $0$ is not complemented in $\ell_\infty$.