论文标题
在椭圆形曲线主导的投影品种中的非架构的整个曲线
Non-Archimedean entire curves in projective varieties dominating an elliptic curve
论文作者
论文摘要
令$ k $为代数封闭,完整,非架构的特征零字段。我们证明了对不规则性的投射表面的非架构绿色 - griffiths-构想。更确切地说,我们证明,如果$ x/k $是一种浓烈的投射表面,可以承认椭圆形曲线主导的形态,那么$ x $是$ k $ - 分析的brody双曲线。我们证明中的主要成分是一个定理,涉及投影性的整个曲线的代数堕落,伪散布品种承认对椭圆形曲线的主要形态。
Let $K$ be an algebraically closed, complete, non-Archimedean valued field of characteristic zero. We prove the non-Archimedean Green--Griffiths--Lang conjecture for projective surfaces of irregularity one. More precisely, we prove that if $X/K$ is a groupless, projective surface that admits a dominant morphism an elliptic curve, then $X$ is $K$-analytically Brody hyperbolic. The main ingredient in our proof is a theorem concerning the algebraic degeneracy of non-Archimedean entire curves in projective, pseudo-groupless varieties admitting a dominant morphism to an elliptic curve.