论文标题

在入侵检测系统中使用大数据挖掘的数据挖掘:系统文献综述

Data Mining with Big Data in Intrusion Detection Systems: A Systematic Literature Review

论文作者

Salo, Fadi, Injadat, MohammadNoor, Nassif, Ali Bou, Essex, Aleksander

论文摘要

云计算已成为用于复杂,高性能和可扩展计算的强大且必不可少的技术。云技术部署的指数扩展从各种应用程序,资源和平台中产生了大量数据。反过来,数据创建的速度和数量已开始对数据管理和安全构成重大挑战。因此,大数据设置中入侵检测系统(ID)的设计和部署已成为一个重要的话题。在本文中,我们在2013 - 2018年期间对基于IDS的解决方案中使用的数据挖掘技术(DMT)进行了系统文献综述(SLR)。我们采用了基于标准的,有目的的采样来识别32篇文章,这构成了本调查的主要来源。经过仔细研究这些文章后,我们确定了在IDS上下文中部署的17个单独的DMT。本文还介绍了实施DMT和分布式流媒体框架(DSF)的各种研究作品的优点和缺点,以检测和/或防止在大数据环境中发生恶意攻击。

Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation. The exponential expansion in the deployment of cloud technology has produced a massive amount of data from a variety of applications, resources and platforms. In turn, the rapid rate and volume of data creation has begun to pose significant challenges for data management and security. The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance. In this paper, we conduct a systematic literature review (SLR) of data mining techniques (DMT) used in IDS-based solutions through the period 2013-2018. We employed criterion-based, purposive sampling identifying 32 articles, which constitute the primary source of the present survey. After a careful investigation of these articles, we identified 17 separate DMTs deployed in an IDS context. This paper also presents the merits and disadvantages of the various works of current research that implemented DMTs and distributed streaming frameworks (DSF) to detect and/or prevent malicious attacks in a big data environment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源