论文标题

COVID-19:使用有偏见的病例测试数据来实现复制因素

COVID-19: Nowcasting Reproduction Factors Using Biased Case Testing Data

论文作者

Contaldi, Carlo R.

论文摘要

及时估算Covid-19的当前价值$ r $ $ r $已成为为管理策略提供努力的关键目的。 $ r $是政策制定者在设定缓解水平的重要指标,对于准确的流行进展建模也很重要。这篇简短的论文介绍了一种从偏见的病例测试数据中估算$ r $的方法。使用测试数据而不是住院或死亡数据,沿着症状的进展量表提供了较早的度量。在与流行病的指数性质作斗争时,这可能非常重要。我们开发了一个实用的估计器,并将其应用于苏格兰案例测试数据以推断当前(2020年5月20日)$ r $ $ 0.74 $,$ 95 \%$ $置信区间$ [0.48-0.86] $。

Timely estimation of the current value for COVID-19 reproduction factor $R$ has become a key aim of efforts to inform management strategies. $R$ is an important metric used by policy-makers in setting mitigation levels and is also important for accurate modelling of epidemic progression. This brief paper introduces a method for estimating $R$ from biased case testing data. Using testing data, rather than hospitalisation or death data, provides a much earlier metric along the symptomatic progression scale. This can be hugely important when fighting the exponential nature of an epidemic. We develop a practical estimator and apply it to Scottish case testing data to infer a current (20 May 2020) $R$ value of $0.74$ with $95\%$ confidence interval $[0.48 - 0.86]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源