论文标题

日落:型号驱动的人均太阳能异常检测到住宅阵列

SunDown: Model-driven Per-Panel Solar Anomaly Detection for Residential Arrays

论文作者

Feng, Menghong, Bashir, Noman, Shenoy, Prashant, Irwin, David, Kosanovic, Beka

论文摘要

近年来,在技术改进和价格下跌的驱动下,公用事业规模和住宅规模的太阳能设施都显着增长。与经过专业管理和维护的公用事业规模的太阳能农场不同,较小的住宅规模装置通常缺乏感应和仪器来进行性能监控和故障检测。结果,故障可能会长时间未发现,从而导致房主产生和收入损失。在本文中,我们介绍了日落,这是一种无传感器方法,旨在检测住宅太阳能阵列中的人均断层。 Sundown不需要任何新的传感器来进行故障检测,而是使用模型驱动的方法,该方法利用相邻面板产生的功率之间的相关性来检测与预期行为的偏差。日落可以处理多个面板中的并发故障,并执行异常分类以确定可能的原因。使用来自真实房屋的两年太阳能生成数据和一个手动生成多个太阳故障的数据集,我们表明我们的方法在预测每块面板输出时的MAPE为2.98 \%。我们的结果还表明,日落能够检测和分类的故障,包括从雪覆盖,叶子和碎屑中,以及具有99.13%精度的电衰竭,并且可以以97.2%的精度检测多个并发故障。

There has been significant growth in both utility-scale and residential-scale solar installations in recent years, driven by rapid technology improvements and falling prices. Unlike utility-scale solar farms that are professionally managed and maintained, smaller residential-scale installations often lack sensing and instrumentation for performance monitoring and fault detection. As a result, faults may go undetected for long periods of time, resulting in generation and revenue losses for the homeowner. In this paper, we present SunDown, a sensorless approach designed to detect per-panel faults in residential solar arrays. SunDown does not require any new sensors for its fault detection and instead uses a model-driven approach that leverages correlations between the power produced by adjacent panels to detect deviations from expected behavior. SunDown can handle concurrent faults in multiple panels and perform anomaly classification to determine probable causes. Using two years of solar generation data from a real home and a manually generated dataset of multiple solar faults, we show that our approach has a MAPE of 2.98\% when predicting per-panel output. Our results also show that SunDown is able to detect and classify faults, including from snow cover, leaves and debris, and electrical failures with 99.13% accuracy, and can detect multiple concurrent faults with 97.2% accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源