论文标题
最大$ 4 $ -CYCLE的最低数量在最大平面图中具有少量顶点
The Minimum Number of $4$-Cycles in a Maximal Planar Graph with Small Number of Vertices
论文作者
论文摘要
Hakimi和Schmeichel确定了最大平面图中长度4的循环数的急剧下限,该图2 $ n $顶点,$ n \ geq 5 $。已经表明,限制为$ n = 5,12 $和$ n \ geq 14 $顶点。但是,作者仅猜想了最大平面图的最小循环4的最小循环数,其余的小顶点数字。在本说明中,我们确认他们的猜想。
Hakimi and Schmeichel determined a sharp lower bound for the number of cycles of length 4 in a maximal planar graph with $n$ vertices, $n\geq 5$. It has been shown that the bound is sharp for $n = 5,12$ and $n\geq 14$ vertices. However, the authors only conjectured the minimum number of cycles of length 4 for maximal planar graphs with the remaining small vertex numbers. In this note, we confirm their conjecture.