论文标题

联合项目建议和属性推理:一种自适应图卷积网络方法

Joint Item Recommendation and Attribute Inference: An Adaptive Graph Convolutional Network Approach

论文作者

Wu, Le, Yang, Yonghui, Zhang, Kun, Hong, Richang, Fu, Yanjie, Wang, Meng

论文摘要

在许多推荐系统中,用户和项目与属性相关联,用户显示对项目的偏好。属性信息描述了用户的特征,并且具有广泛的应用程序,例如用户分析,项目注释和功能增强建议。由于注释用户(item)属性是一项劳动密集型任务,因此属性值通常不完整,而许多属性值却缺少。因此,项目建议和属性推断已成为这些平台中的两个主要任务。研究人员长期以来一直融合了用户(项目)属性,并且偏好行为高度相关。一些研究人员建议利用一种数据来完成其余任务,并表明提高性能。然而,这些模型要么忽略了用户(项目)属性的不完整性,要么考虑了这两个任务与简单模型的相关性,从而导致了这两个任务的次优性能。为此,在本文中,我们在属性的用户项目二分图中定义了这两个任务,并提出了一种自适应图形卷积网络(AGCN)方法,以进行联合项目建议和属性推理。 AGCN的关键思想是迭代执行两个部分:1)学习图嵌入参数具有先前学习的近似属性值以促进两个任务; 2)将近似更新的属性值发送回属性图,以获得更好的图形嵌入学习。因此,AGCN可以通过合并给定属性和估计的属性值来自适应地调整嵌入学习参数,以提供弱监督的信息以完善这两个任务。三个现实世界数据集的广泛实验结果清楚地表明了该模型的有效性。

In many recommender systems, users and items are associated with attributes, and users show preferences to items. The attribute information describes users'(items') characteristics and has a wide range of applications, such as user profiling, item annotation, and feature-enhanced recommendation. As annotating user (item) attributes is a labor intensive task, the attribute values are often incomplete with many missing attribute values. Therefore, item recommendation and attribute inference have become two main tasks in these platforms. Researchers have long converged that user (item) attributes and the preference behavior are highly correlated. Some researchers proposed to leverage one kind of data for the remaining task, and showed to improve performance. Nevertheless, these models either neglected the incompleteness of user (item) attributes or regarded the correlation of the two tasks with simple models, leading to suboptimal performance of these two tasks. To this end, in this paper, we define these two tasks in an attributed user-item bipartite graph, and propose an Adaptive Graph Convolutional Network (AGCN) approach for joint item recommendation and attribute inference. The key idea of AGCN is to iteratively perform two parts: 1) Learning graph embedding parameters with previously learned approximated attribute values to facilitate two tasks; 2) Sending the approximated updated attribute values back to the attributed graph for better graph embedding learning. Therefore, AGCN could adaptively adjust the graph embedding learning parameters by incorporating both the given attributes and the estimated attribute values, in order to provide weakly supervised information to refine the two tasks. Extensive experimental results on three real-world datasets clearly show the effectiveness of the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源