论文标题
$ \ mathbb h^n $中凸形域的基本差距消失
The vanishing of the fundamental gap of convex domains in $\mathbb H^n$
论文作者
论文摘要
对于具有$ \ mathbb h^n $,$ n \ geq 2 $的凸面域上具有差异域边界条件的拉普拉斯操作员,我们证明,直径正方形的基本间隙的产物对于任何直径的域而言可能很小。
For the Laplace operator with Dirichlet boundary conditions on convex domains in $\mathbb H^n$, $n\geq 2$, we prove that the product of the fundamental gap with the square of the diameter can be arbitrarily small for domains of any diameter.