论文标题
关于Golomb猜想的概括
On the generalization of Golomb's conjecture
论文作者
论文摘要
让$ p $成为足够大的质量,$ r $是任何给定的正整数。假设$ a_1,\,\ dots,\,a_r $是成对的,而不是零modulo $ p $。令$ n(a_1,\,\ dots,\,a _r; \,p)$表示$α_1,\,\,\ dots,\,α_r,\,β$的$ primots modulo $ $ p $的$α_1,\,\ dots的数量,例如$α_1_1+α_1+β\ equiv a_1,\ equiv a_1,\ e y \ \ \ \ \ \ \ \ \ \ \ \ \,\, a_r \,({\ rm mod} \,p)。$在本文的第一个版本中,我们证明了$ n的渐近公式(a_1,\,\ dots,\ dots,\,a_r; \,p)$,以便我们可以回答wenpeng zhang and tingting wang wang wang wang。但是我们发现我们的结果已包括在1956年的L. Carlitz论文中,这在下面的其他评论中进行了解释。
Let $p$ be a sufficiently large prime number, $r$ be any given positive integer. Suppose that $a_1,\,\dots,\,a_r$ are pairwise distinct and not zero modulo $p$. Let $N(a_1,\,\dots,\,a_r;\,p)$ denote the number of $α_1,\,\dots,\,α_r,\,β$, which are primitive roots modulo $p$, such that $α_1+β\equiv a_1,\,\dots,\,α_r+β\equiv a_r\,({\rm mod}\,p).$ In the first version of this paper, we proved an asymptotic formula for $N(a_1,\,\dots,\,a_r;\,p)$ so that we could answer an open problem of Wenpeng Zhang and Tingting Wang. But we found that our result had been included in a paper of L. Carlitz in 1956, which is explained in the additional remark below.