论文标题
贝叶斯模型预测控制:有效的模型探索和遗憾的界限使用后取样
Bayesian model predictive control: Efficient model exploration and regret bounds using posterior sampling
论文作者
论文摘要
结合运营约束的紧密性能规格使模型预测控制(MPC)成为各个行业的首选方法。由于MPC控制器的性能取决于该过程的足够准确的目标和预测模型,因此MPC设计过程中的重大努力致力于建模和识别。在机器学习领域的可用系统数据和进步量增加的驱动下,已经开发了数据驱动的MPC技术,以促进MPC控制器设计。尽管这些方法能够利用可用的数据,但它们通常不提供原则上的机制来自动对可用数据和探索的开发进行权衡以改进和更新目标和预测模型。为此,我们使用后验采样技术提出了一种基于学习的MPC公式,该技术在学习性能的同时,使用现成的MPC软件和算法易于实现,从而为学习性能提供有限的遗憾界限。该方法的性能分析是基于后验采样理论,其实践效率通过高度非线性动力学拖车系统的数值示例进行了说明。
Tight performance specifications in combination with operational constraints make model predictive control (MPC) the method of choice in various industries. As the performance of an MPC controller depends on a sufficiently accurate objective and prediction model of the process, a significant effort in the MPC design procedure is dedicated to modeling and identification. Driven by the increasing amount of available system data and advances in the field of machine learning, data-driven MPC techniques have been developed to facilitate the MPC controller design. While these methods are able to leverage available data, they typically do not provide principled mechanisms to automatically trade off exploitation of available data and exploration to improve and update the objective and prediction model. To this end, we present a learning-based MPC formulation using posterior sampling techniques, which provides finite-time regret bounds on the learning performance while being simple to implement using off-the-shelf MPC software and algorithms. The performance analysis of the method is based on posterior sampling theory and its practical efficiency is illustrated using a numerical example of a highly nonlinear dynamical car-trailer system.