论文标题

带有贝叶斯添加剂回归树的新空间计数数据模型用于事故热点识别

A New Spatial Count Data Model with Bayesian Additive Regression Trees for Accident Hot Spot Identification

论文作者

Krueger, Rico, Bansal, Prateek, Buddhavarapu, Prasad

论文摘要

事故热点的识别是道路安全管理的核心任务。贝叶斯计数数据模型已成为用于在道路网络中产生危险站点的概率排名的主力方法。通常,这些方法假设简单的线性链接函数规范,但是,这限制了模型的预测能力。此外,由于需要解释未观察到的异质性和空间相关性而产生的复杂模型结构,因此无法进行广泛的规范搜索。现代机器学习(ML)方法提供了自动化链接功能规范的方法。但是,这些方法不会捕获估计不确定性,并且也很难合并空间相关性。鉴于文献中的这些差距,本文提出了一种新的空间负二项式模型,该模型使用贝叶斯添加剂回归树来内源选择链接函数的规范。在Polya-Gamma数据增强技术的帮助下,提出的模型中的后推断是可行的。我们在大都会高速公路网络上的崩溃数数据集上测试了该新模型的性能。经验结果表明,提出的模型至少以及基线空间计数数据模型具有随机参数,就拟合优度和站点排名能力而言。

The identification of accident hot spots is a central task of road safety management. Bayesian count data models have emerged as the workhorse method for producing probabilistic rankings of hazardous sites in road networks. Typically, these methods assume simple linear link function specifications, which, however, limit the predictive power of a model. Furthermore, extensive specification searches are precluded by complex model structures arising from the need to account for unobserved heterogeneity and spatial correlations. Modern machine learning (ML) methods offer ways to automate the specification of the link function. However, these methods do not capture estimation uncertainty, and it is also difficult to incorporate spatial correlations. In light of these gaps in the literature, this paper proposes a new spatial negative binomial model, which uses Bayesian additive regression trees to endogenously select the specification of the link function. Posterior inference in the proposed model is made feasible with the help of the Polya-Gamma data augmentation technique. We test the performance of this new model on a crash count data set from a metropolitan highway network. The empirical results show that the proposed model performs at least as well as a baseline spatial count data model with random parameters in terms of goodness of fit and site ranking ability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源