论文标题
学习传递基于归纳图的建议的图形嵌入
Learning to Transfer Graph Embeddings for Inductive Graph based Recommendation
论文作者
论文摘要
随着视频的可用性越来越多,如何编辑它们并向用户展示最有趣的部分,即视频亮点,对于许多广泛的应用程序,迫切需要。由于用户的偏好是主观的,并且因人而异,因此以前的广义视频突出显示模型无法根据用户的独特偏好量身定制。在本文中,我们研究了个性化视频的问题,突出显示了具有丰富视觉内容的建议。通过将每个视频分为非重叠段,我们将问题作为个性化的段推荐任务,在测试阶段中有许多新段。此问题的主要挑战在于:在培训数据和新细分市场中,视频有限的冷启动用户在测试阶段没有任何用户评分。在本文中,我们提出了一个基于归纳图的基于图形的转移学习框架,用于个性化视频突出显示建议(TransGrec)。 TransGrec由两个部分组成:图神经网络,然后是项目嵌入转移网络。具体而言,图形神经网络部分利用了用户和段之间的高阶接近度,以减轻用户冷启动问题。传输网络旨在通过将每个项目的视觉内容作为输入来近似于图形神经网络的学习项目嵌入,以便在测试阶段解决新的段问题。我们设计了传输学习优化功能的两个详细实现,并展示了如何通过不同的传输学习优化功能有效地优化TransGrec的两个部分。对现实世界数据集的广泛实验结果清楚地表明了我们提出的模型的有效性。
With the increasing availability of videos, how to edit them and present the most interesting parts to users, i.e., video highlight, has become an urgent need with many broad applications. As users'visual preferences are subjective and vary from person to person, previous generalized video highlight extraction models fail to tailor to users' unique preferences. In this paper, we study the problem of personalized video highlight recommendation with rich visual content. By dividing each video into non-overlapping segments, we formulate the problem as a personalized segment recommendation task with many new segments in the test stage. The key challenges of this problem lie in: the cold-start users with limited video highlight records in the training data and new segments without any user ratings at the test stage. In this paper, we propose an inductive Graph based Transfer learning framework for personalized video highlight Recommendation (TransGRec). TransGRec is composed of two parts: a graph neural network followed by an item embedding transfer network. Specifically, the graph neural network part exploits the higher-order proximity between users and segments to alleviate the user cold-start problem. The transfer network is designed to approximate the learned item embeddings from graph neural networks by taking each item's visual content as input, in order to tackle the new segment problem in the test phase. We design two detailed implementations of the transfer learning optimization function, and we show how the two parts of TransGRec can be efficiently optimized with different transfer learning optimization functions. Extensive experimental results on a real-world dataset clearly show the effectiveness of our proposed model.