论文标题

计算莫斯科对应矩阵的恢复模型

The recovery model for the calculation of correspondence matrix for Moscow

论文作者

Ivanova, Anastasiya, Omelchenko, Sergey, Kotliarova, Ekaterina, Matyukhin, Vladislav

论文摘要

在本文中,我们考虑了基于莫斯科实际对应关系的观察结果恢复对应矩阵的问题。按照常规方法,运输网络被视为有向图,其边缘对应于道路段,并且图顶点对应于交通参与者离开或输入的区域。城市居民的数量被认为是恒定的。恢复通信矩阵的问题是计算从$ i $区域到$ j $区域的所有信件。为了恢复矩阵,我们建议使用在城市研究中计算对应矩阵的最流行方法之一 - 熵模型。在我们的工作中,我们描述了熵模型的进化依据,以及在计算对应矩阵中解决熵线性编程(ELP)问题的过渡的主要思想。为了解决ELP问题,提议将其传递给偶性问题。在本文中,我们描述了解决此问题的几种数值优化方法:sindhorn方法和加速sindhorn方法。我们为成本函数的以下变体提供数值实验:线性成本函数以及功率和对数成本函数的叠加。在这些功能中,成本是区域之间平均时间和距离的组合,这取决于参数。计算多个参数集的对应矩阵,然后我们计算了相对于已知对应矩阵的还原矩阵的质量。我们假设恢复的对应矩阵中的噪声是高斯,因此,我们将标准偏差用作质量度量。

In this paper, we consider the problem of restoring the correspondence matrix based on the observations of real correspondences in Moscow. Following the conventional approach, the transport network is considered as a directed graph whose edges correspond to road sections and the graph vertices correspond to areas that the traffic participants leave or enter. The number of city residents is considered constant. The problem of restoring the correspondence matrix is to calculate all the correspondence from the $i$ area to the $j$ area. To restore the matrix, we propose to use one of the most popular methods of calculating the correspondence matrix in urban studies -- the entropy model. In our work, we describe the evolutionary justification of the entropy model and the main idea of the transition to solving the problem of entropy-linear programming (ELP) in calculating the correspondence matrix. To solve the ELP problem, it is proposed to pass to the dual problem. In this paper, we describe several numerical optimization methods for solving this problem: the Sinkhorn method and the Accelerated Sinkhorn method. We provide numerical experiments for the following variants of cost functions: a linear cost function and a superposition of the power and logarithmic cost functions. In these functions, the cost is a combination of average time and distance between areas, which depends on the parameters. The correspondence matrix is calculated for multiple sets of parameters and then we calculate the quality of the restored matrix relative to the known correspondence matrix. We assume that the noise in the restored correspondence matrix is Gaussian, as a result, we use the standard deviation as a quality metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源