论文标题

分层功能嵌入属性识别

Hierarchical Feature Embedding for Attribute Recognition

论文作者

Yang, Jie, Fan, Jiarou, Wang, Yiru, Wang, Yige, Gan, Weihao, Liu, Lin, Wu, Wei

论文摘要

属性识别是一项至关重要但具有挑战性的任务,这是由于观点变化,照明变化和外观多样性等。大多数先前的工作仅考虑属性级特征嵌入,在复杂的异质条件下可能表现较差。为了解决此问题,我们提出了一个层次功能嵌入(HFE)框架,该框架通过组合属性和ID信息来学习嵌入精细的功能。在HFE中,我们同时维护班级和类内部特征。不仅更接近具有相同属性的样品,而且具有相同ID的样品的样本可以限制视觉硬样品在属性方面的特征嵌入,并改善对变体条件的鲁棒性。我们通过利用HFE损失由属性级别和ID级约束来建立这种层次结构。我们还引入了绝对的边界正规化和动态减肥重量作为补充组件,以帮助建立功能嵌入。实验表明,我们的方法在两个行人属性数据集和一个面部属性数据集上实现了最新结果。

Attribute recognition is a crucial but challenging task due to viewpoint changes, illumination variations and appearance diversities, etc. Most of previous work only consider the attribute-level feature embedding, which might perform poorly in complicated heterogeneous conditions. To address this problem, we propose a hierarchical feature embedding (HFE) framework, which learns a fine-grained feature embedding by combining attribute and ID information. In HFE, we maintain the inter-class and intra-class feature embedding simultaneously. Not only samples with the same attribute but also samples with the same ID are gathered more closely, which could restrict the feature embedding of visually hard samples with regard to attributes and improve the robustness to variant conditions. We establish this hierarchical structure by utilizing HFE loss consisted of attribute-level and ID-level constraints. We also introduce an absolute boundary regularization and a dynamic loss weight as supplementary components to help build up the feature embedding. Experiments show that our method achieves the state-of-the-art results on two pedestrian attribute datasets and a facial attribute dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源