论文标题
阿克夫超级堡的半圣像延伸的表示理论
Representation theory of a semisimple extension of the Takiff superalgebra
论文作者
论文摘要
我们研究了Takiff Superalgebra的半精美扩展,该延伸是具有非常丰富的代表理论。我们确定有限维和BGG模块类别中的块,还确定了Borel子代数。我们进一步计算了两个有限维简单对象之间的所有扩展组,并证明有限维模块类别中的所有非主要块都是Koszul。
We study a semisimple extension of a Takiff superalgebra which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul.