论文标题

使用衍射网络的频谱编码的单像素机视觉

Spectrally-Encoded Single-Pixel Machine Vision Using Diffractive Networks

论文作者

Li, Jingxi, Mengu, Deniz, Yardimci, Nezih T., Luo, Yi, Li, Xurong, Veli, Muhammed, Rivenson, Yair, Jarrahi, Mona, Ozcan, Aydogan

论文摘要

3D工程已经为设计可以通过轻度互动执行各种计算任务的系统开辟了新的途径。在这里,我们以多种衍射层的形式演示了光网络的设计,这些衍射层经过深度学习的训练,以转换和编码对象的空间信息到衍射光的功率谱中,这些光谱用于用单像素谱图探测器对对象进行光学分类。使用具有等离子纳米烷基的检测器的时域光谱设置,我们通过实验验证了Terahertz Spectrum在Terahertz Spectrum的该机器视觉框架的验证,以通过在十个独特的波长下检测衍射光的光谱能力对手写数字的图像进行光学分类。我们还报告了通过具有浅电子神经网络的衍射光学网络实现的该光谱编码的耦合,该衍射光网络分别训练,以基于在衍射光中这十个不同的波长中编码的光谱信息进行重建手写数字的图像。这些重建的图像展示了特定于任务的图像减压,并且也可以作为新输入循环到相同的衍射网络以改善其光学对象分类。这个独特的机器视觉框架将深度学习的力量与衍射网络的空间和光谱处理能力融合在一起,也可以扩展到其他光谱域测量系统,以启用新的3D成像和与光谱编码的分类任务集成的新型3D成像和感应方式。

3D engineering of matter has opened up new avenues for designing systems that can perform various computational tasks through light-matter interaction. Here, we demonstrate the design of optical networks in the form of multiple diffractive layers that are trained using deep learning to transform and encode the spatial information of objects into the power spectrum of the diffracted light, which are used to perform optical classification of objects with a single-pixel spectroscopic detector. Using a time-domain spectroscopy setup with a plasmonic nanoantenna-based detector, we experimentally validated this machine vision framework at terahertz spectrum to optically classify the images of handwritten digits by detecting the spectral power of the diffracted light at ten distinct wavelengths, each representing one class/digit. We also report the coupling of this spectral encoding achieved through a diffractive optical network with a shallow electronic neural network, separately trained to reconstruct the images of handwritten digits based on solely the spectral information encoded in these ten distinct wavelengths within the diffracted light. These reconstructed images demonstrate task-specific image decompression and can also be cycled back as new inputs to the same diffractive network to improve its optical object classification. This unique machine vision framework merges the power of deep learning with the spatial and spectral processing capabilities of diffractive networks, and can also be extended to other spectral-domain measurement systems to enable new 3D imaging and sensing modalities integrated with spectrally encoded classification tasks performed through diffractive optical networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源