论文标题

给定层次结构理论认知状态过滤

Givenness Hierarchy Theoretic Cognitive Status Filtering

论文作者

Pal, Poulomi, Zhu, Lixiao, Golden-Lasher, Andrea, Swaminathan, Akshay, Williams, Tom

论文摘要

为了使具有语言能力的互动机器人有效地引入人类社会,他们必须能够自然而有效地就在人类环境中发现的物体,位置和人进行沟通。自然语言交流的一个重要方面是代词的使用。对授权等级(GH)的语言理论进行交流,人类使用代词,这是由于对他们的对话伙伴的意思是对认知状态的隐式假设。在先前的工作中,威廉姆斯等人。出于机器人语言理解的目的,提出了完整GH的第一个计算实施,利用了GH文献所告知的一组规则。但是,这种方法是专门为语言理解而设计的,围绕着GH启发的记忆结构,用于评估鉴于特定的认知状况的候选参与者。相比之下,语言产生需要一个模型,在该模型中,可以评估给定实体的认知状况。我们介绍并比较了认知状态的两个这样的模型:基于规则的有限状态机器模型直接由GH文献和一个认知状态过滤器告知,旨在更灵活地处理不确定性。使用OFAI多模式描述语料库的银色标准英文子集证明和评估模型。

For language-capable interactive robots to be effectively introduced into human society, they must be able to naturally and efficiently communicate about the objects, locations, and people found in human environments. An important aspect of natural language communication is the use of pronouns. Ac-cording to the linguistic theory of the Givenness Hierarchy(GH), humans use pronouns due to implicit assumptions about the cognitive statuses their referents have in the minds of their conversational partners. In previous work, Williams et al. presented the first computational implementation of the full GH for the purpose of robot language understanding, leveraging a set of rules informed by the GH literature. However, that approach was designed specifically for language understanding,oriented around GH-inspired memory structures used to assess what entities are candidate referents given a particular cognitive status. In contrast, language generation requires a model in which cognitive status can be assessed for a given entity. We present and compare two such models of cognitive status: a rule-based Finite State Machine model directly informed by the GH literature and a Cognitive Status Filter designed to more flexibly handle uncertainty. The models are demonstrated and evaluated using a silver-standard English subset of the OFAI Multimodal Task Description Corpus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源