论文标题
通用各向异性LIFSHITZ标量场理论:无质量的大量最小减法
Generic anisotropic Lifshitz scalar field theory: masslesslike massive minimal subtraction
论文作者
论文摘要
我们为大型$ λϕ^4 $标量字段制定了最简单的最小减法版本,并使用$ o(n)$对称性,用于通用各向异性LIFSHITZ空间时间。在裸露的两点顶点函数图中应用了适当的部分$ -P $操作,该图将原始图分离为两个不同积分的总和,这是质量和外部动量中相应多项式的系数。在提出的方法中,可以丢弃质量项的系数,并且在{\ IT每个外部动量/质量子空间}中,我们获得了一种与无数理论中同一方案几乎相同的减法方法。我们将该方法的演示限制在两点顶点部分中最高三环阶。我们通过对静态关键指数的示意计算来验证方法的一致性,该计算验证了普遍性假设。
We formulate the simplest minimal subtraction version for massive $λϕ^4$ scalar fields with $O(N)$ symmetry for generic anisotropic Lifshitz space-times. An appropriate partial$-p$ operation is applied in the bare two-point vertex function diagrams, which separates the original diagram into a sum of two different integrals which are the coefficients of the corresponding polynomials in the mass and external momentum. Within the proposed method, the coefficient of the mass terms can be discarded and we obtain a minimal subtraction method almost identical to the same scheme in the massless theory in {\it every external momentum/mass subspace}. We restrict our demonstration of the method up to three-loop order in the two-point vertex part. We verify the consistency of our method by a diagrammatic computation of static critical exponents, which validates the universality hypothesis.