论文标题

Minkowski的不平等和弯曲空间中的逆弯曲流动限制

Minkowski inequalities and constrained inverse curvature flows in warped spaces

论文作者

Scheuer, Julian

论文摘要

本文涉及在一系列Riemannian扭曲的空间中局部受约束的逆弯曲流。对于某些类别的流量,我们证明了很长的存在和平滑的收敛到径向坐标切片。在二维表面和合适的速度的情况下,这些流量具有两个单调量。在这种情况下,新的Minkowski类型不平等是结果。在较高的维度中,当环境径向RICCI曲率持续负面时,我们使用反平均曲率流以获得新的Minkowski不平等。

This paper deals with locally constrained inverse curvature flows in a broad class of Riemannian warped spaces. For a certain class of such flows we prove long time existence and smooth convergence to a radial coordinate slice. In the case of two-dimensional surfaces and a suitable speed, these flows enjoy two monotone quantities. In such cases new Minkowski type inequalities are the consequence. In higher dimensions we use the inverse mean curvature flow to obtain new Minkowski inequalities when the ambient radial Ricci curvature is constantly negative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源